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Mini-review: the p53 gene as a bona fide tumor suppressor 
gene in human skin cancers

Skin cancer is the out-of-control growth of skin cells that can 
be divided into keratinocyte carcinoma (non-melanoma) and 
malignant melanoma. Basal cell carcinoma (BCC) and squamous 
cell carcinomas (SCC) are the most common forms of keratinocyte 
carcinoma that may grow to involve other parts of the body. 
These cancers are caused by exposure to ultraviolet (UV) light, 
toxic substances, and a family history of skin problems. Different 
signaling pathways are likely to be involved in skin cancer. The 
TP53 gene (the gene coding for cellular tumor protein p53) is 
among the most diverse and complex molecules involved in 
cellular functions. The p53 pathway can initiate DNA replication, 
modulate cell cycle events, and interact with tumor suppressor 
genes (TSGs). Mutations in TP53 can occur in numerous human 
cancers, leading to cellular immortalization, inappropriate 
proliferation, and genomic instability. TP53 plays a big role in 
both melanoma and non-melanoma skin cancers. Despite the 
intensive investigation to clarify the impact of TP53 mutations 
in the induction of skin cancer, much remains to be elucidated. 
In this mini-review, we will discuss the protective role of p53 
as a bona fide tumor suppressor gene in human skin cancers.
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INTRODUCTION
Skin cancer is an abnormal growth of skin cells 

that can be classified into keratinocyte carcinoma 
(KC; non-melanoma) 1-3 and malignant melanoma 

(MM) 4, 5. Basal cell carcinoma (BCC) and squamous 
cell carcinomas (SCC) are the most common forms 
of KC that may grow to involve other parts of the 
body 6-8. MM is the least common form of skin 
cancer (3–5% of total skin cancers) and the most 
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aggressive type of malignancy that can develop from 
melanocytes (pigment-producing cells) 9,10. There 
are a variety of different skin cancer symptoms, 
including skin lesions with an irregular border, a 
firm and red lump or nodule, a bleeding or scabbing 
sore, a large brownish spot, a painful or dark lesion, 
and more 11-13. Most skin cancers are caused by 
exposure to radiation or toxic substances, excessive 
sun exposure (ultraviolet [UV] light), a weakened 
immune system, and a family history of skin cancer 14-

17. Different pathways are likely to be involved in 
skin cancer 5,18-20. The TP53 gene (the gene coding 
for cellular tumor protein p53) is among the most 
diverse and complex molecules involved in cellular 
functions 21-23. As a transcriptional factor, p53 can 
modulate cell cycle arrest and cell apoptosis and 
can interact with tumor suppressor genes (TSGs) 24-

28. Genetic alterations within the TP53 gene have 
a direct correlation with cancer development 29-33. 
TP53 mutations play a big role in both melanoma 
and non-melanoma skin cancers 34,35. Despite the 
intensive investigation to clarify the impact of TP53 
in the suppression of skin cancer, much remains to 
be elucidated. In this mini-review, we will discuss 
the protective role of p53 as a bona fide tumor 
suppressor gene in human skin cancers.

The biological function of the p53 tumor 
suppressor gene

The p53 pathway is composed of a network of 
genes that initiate DNA replication and cell cycle 
events 36,37. The p53 protein has several domains such 
as the amino-terminus domain (the transactivation 
domain), the proline-rich domain (for an efficient 
DNA-damage response through apoptosis), the 
carboxy-terminal basic DNA-binding domain that 
inhibits p53 binding to sequence-specific DNA (a 
“hot spot” for mutation), the oligomerization domain, 
the c-terminal domain (containing three putative 
nuclear localization signals [NLS]), and the leucine-
rich C-terminal nuclear export signals (NES) 38-40. 
As a guardian of the genome, p53 prevents cancer 
through numerous mechanisms and regulates DNA 
stability, cell apoptosis, cell cycle arrest, hypoxia, 
oncogenic events, and cellular senescence 41-45. 
The p53 protein, by activating or inhibiting key 
effector genes and a variety of stress-inducing 
signals, can stimulate a variety of antiproliferative 
pathways 46,47. For example, p53 stabilization occurs 

in response to DNA damage by various kinases 
such as ATR, ATM, DNA-PK, Chk1, and Chk2 48. 
Post-translational modifications (PTM) of p53 can 
stimulate the recruitment of p53 binding proteins 
to specific promoters 49. The p53 protein interacts 
with histone acetyltransferase (HAT, CBP/p300) 
and histone deacetylases (HDAC1 and HDAC2) to 
modulate transcription 50. Besides, the MDM2 protein 
as a ubiquitin ligase and a negative regulator was 
previously found to mediate the ubiquitination and 
degradation of p53 51-53. Therefore, in response to 
stress signals, p53-mediated apoptosis can be induced 
after the inactivation of the MDM2 protein 54. The 
mammalian TOR protein (mTOR) signaling pathway 
(TORC1 and TORC2) positively regulates cell growth 
and protein synthesis 27,55,56. Upon oxidative stress 
or DNA damage, p53 increases the phosphorylation 
of Sestrin1 (Sesn1), Sestrin2 (Sesn2), and the AMP-
responsive protein kinase (AMPK) to inhibit mTOR 
signaling 57. The PI3K/Akt signaling pathway, by 
promoting cell proliferation and differentiation, 
has a significant role in tumorigenesis 58. Akt in 
response to environmental stress increases the 
nuclear translocation of MDM2 and decreases p53 
transcriptional activity 59. 

The p53 protein can also regulate the G2-M 
checkpoint regulators cyclin B1/cdc2, which are 
required for entry into mitosis 60. After DNA damage, 
14-3-3  protein expression can be activated by p53, 
blocking the nuclear localization of cyclin B1 61,62. In 
the P16/cyclin D1/retinoblastoma tumor suppressor 
(Rb) pathway, tumor suppressor protein P14ARF 
as a cell cycle regulator can interact with MDM2 
and activate p53 63,64. Notably, p53 can activate the 
damage-regulated autophagy modulator (DRAM) 
gene and modulate autophagy in a DRAM-dependent 
manner that is essential for cell and organismal 
survival 65. DRAM, as a lysosomal protein, has 
also been shown to be critical for p53-mediated 
programmed cell death 66.  Based on current 
information, p53 is required for apoptosis and can 
interact with members of the proapoptotic Bcl-2 
family of genes 67,68. In response to various cell death 
signals, PUMA, as a unique p53 apoptotic target gene, 
acts in response to p53 and binds with Bcl-XL protein 
to activate Bax in the mitochondria 69,70. As a negative 
regulator of inflammation, p53 inhibits the secretion 
of WNT ligands and regulates tumor-associated 
macrophages and IL-1  and NF- B activation 71,72. 
These insights illustrate the importance of the tumor 
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suppressor gene p53 in multicellular organisms to 
limit tumorigenesis and inhibit cancer. 

Protective role of p53 in skin cancers 

Disruption of p53 function enhances cellular 
immortalization and gives rise to inappropriate 
proliferation and genomic instability 68. Acute 
p53 activation and genetic alterations within the 
p53 gene have direct correlations with cancer 
development 29,73. Till now, several in vitro and in 
vivo studies have examined the protective role of 
p53 in skin cancer 45,74-76. Analysis of mutations in 

the p53 gene has revealed a correlation between 
UV exposure, apoptosis, and skin cancer 77-79.

Exposure to UV radiation can induce repair 
pathways in the skin 80,81. The p53 protein has a 
leading role in the protection of cells in response to 
DNA damage after exposure to UV 78. In response 
to UV radiation in keratinocytes, p53 through the 
release of paracrine factors triggers cell death, 
apoptosis, melanocyte proliferation, and melanin 
synthesis 79,82. The inactivation of p53 by mutations 
may play a significant role in the stimulation of 
skin carcinogenesis by UV radiation 35,83. 

By activating RAS and Snail or repressing Rb 

Figure 1. Protective role of p53 against skin cancers
The p53 protein can inhibit skin cancer via the activation of RAS and Snail and the suppression of SOX2, Rb, alpha-v integrin, and the caspase 
family. Inactivation of p53 by mutations may play a significant role in the stimulation of skin carcinogenesis by UV radiation. Silibinin delivers 
a therapeutic impact against skin cancer by targeting tumor necrosis factor-  (TNF ), interleukin 1 alpha (IL-1 ), cyclooxygenase-2 (COX-2), 
vascular endothelial growth factor (VEGF), nucleotide excision repair (NER), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), p53, and 
mitogen-activated protein kinase (MAPK). D-carvone can suppress carcinogenesis by regulating the activities of p53, caspase 3/9, and Bax/Bcl-2.



p53 gene and skin cancers

135Iranian Journal of Dermatology, Vol 24, No 2, June 2021

guardian of the genome, p53 plays a big role in 
preventing melanoma and non-melanoma skin 
cancers. Genetic alterations within the p53 gene 
have a direct correlation with skin carcinogenesis. 
The p53 protein can inhibit skin cancer via the 
activation of RAS and Snail and the suppression 
of SOX2, Rb, alpha-v integrin, and the caspase 
family. Despite the intensive efforts to clarify the 
key role of p53 gene mutations in the induction 
of skin cancer, much remains to be elucidated.
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